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Abstract: Data efficiency has always been a significant key topic for deep reinforcement learning. 
The main progress has been on sufficient exploration and effective exploitation. However, the two 
are often discussed separately. Profit from distributed systems, we propose an asynchronous 
approach to deep reinforcement learning by combining exploration and exploitation. We apply our 
framework to off-the-shelf deep reinforcement learning algorithms, and experimental results show 
that our algorithm is superior in final performance and efficiency. 

1. Introduction  

Deep Reinforcement Learning (DRL) has been demonstrated on a series of challenge domains, 
from games [1-2] to robotic control [3]. However, there exist a central challenge to contribute DRL 
algorithms on real-world platforms. The main-stream DRL algorithms remain to be model-free DRL 
algorithms, which suffer from high sample complexity. Either relatively simple tasks or complex 
behaviors with high-dimensional observations might require millions of steps of data collection or 
even substantially more [4]. 

Effective use of computational resources [5] and more powerful and robust models [6] have 
recently achieved some successes for data efficiency. Deep learning frameworks such as DistBelief 
[5] can make large-scale neural networks efficient to implement, which place massive amounts of 
data on a distributed learning system. Some progress has been made on effective use of 
computational resources such as Gorila [7], A3C [8], GA3C [9] and Ape-X [10]. 

Despite the profit from the parallelism, the comprehensive utilization of available resources 
becomes a novel perspective, such as exploration and exploitation. Research on exploration and 
exploitation has always been decoupled, with some research focused on exploration [11-12] and 
others on exploitation [13]. More details can be seen in Section III. A combining and/or unified 
approach to exploration and exploitation remains to be ambiguous. 

In this paper, we propose an asynchronous approach to deep reinforcement learning by combining 
exploration and exploitation, to generate more data and learn efficiently. Unlike general methods of 
distributed framework for deep learning algorithms focusing on parallelizing the computation of the 
models [5] or decoupled actors and learners [10], we contribute distributed systems on data 
generation. 

We investigate the application of our framework integrated with off-the-shelf deep reinforcement 
learning algorithms such as Deep Q-Networks (DQN) [14] and Deep Deterministic Policy Gradient 
(DDPG) [15]. Experiments show this combination of exploration and exploitation is available to 
many types of both continuous control tasks and discrete environments. Our results indicate much 
faster training time and better final performance. 
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2. Background 

In this section, we formulate the standard reinforcement learning problem, and introduce the 
necessary algorithmic foundations on which we demonstrate the methods for this work. 

2.1 Reinforcement learning 

We consider a reinforcement learning process where an agent interacts with an environment 
modeled as a Markov Decision Process (MDP) [16]. An MDP is defined by a tuple ሺ𝒮, 𝒜, 𝑅, 𝛾, 𝑃ሻ, 
where 𝒮 is the state space, 𝒜 is the action space, R is the reward function, 𝛾 is the discount factor 
and P is the transition dynamics. At each state 𝑠, the agent selects an action 𝑎 according to the policy 
π, consisting of the stochastic distribution πሺ𝑠|𝑎ሻ or a deterministic mapping 𝑎 ൌ πሺ𝑠ሻ, transitions 
to new state 𝑠′ according to the dynamics 𝑃ሺ𝑠ᇱ|𝑠, 𝑎ሻ, and receives a reward 𝑅ሺ𝑠, 𝑎ሻ. Here, the goal of 
reinforcement learning is to learn a policy maximizing the expected discounted reward over the 
agent’s trajectory τ ൌ ሺ𝑠଴, 𝑎଴, 𝑠ଵ, 𝑎ଵ, … ሻ. 

2.2 Actor-Critic framework 

The approach to reinforcement learning problems can be available to two alternative methods. 
The first one value function approaches (Critic-only), is an estimate of the expected future reward 
according to the policy π, where the value-action function Q஠ is defined as: 

 𝑄గሺ𝑠, 𝑎ሻ ൌ 𝔼஠ሾ∑ 𝛾௧ାஶ
௧ୀ଴ 𝑅ሺ𝑠௧, 𝑎௧ሻሿ 　　　 

The policy is implicitly derived from 𝑄గ  as 𝜋ሺ𝑠ሻ ൌ argmax௔∈𝒜𝑄గሺ𝑠, 𝑎ሻ. The other available 
method is policy search (Actor-only). In the policy search methods, policies are represented by a 
variety of approaches and can be directly optimized to maximize the cumulative reward, given: 

 𝐽ሺθሻ ൌ 𝔼ఛ~஠ഇሺఛሻሾ𝑟ሺ𝜏ሻሿ ൌ ׬ 𝜋ఏሺ𝜏ሻ𝑟ሺ𝜏ሻ
ఛ~గഇሺఛሻ d𝜏　　　 

Where r(τ) represents the total reward of the trajectory. Actor-Critic framework [17] is composed 
of value function approaches and policy search methods, where the Critic estimates the value 
function according to the temporal difference (TD) learning, while the Actor updates the policy 
parameters according to the learned value function. 

3. Related Works 

3.1 Off-policy DRL Methods 

We demonstrated that, mature off-policy algorithms, such as Deep Deterministic Policy Gradient 
(DDPG) [15] and Normalized Advantage Function (NAF) [4], can achieve a well-used data 
efficiency. In contrast, some general-purpose on-policy DRL algorithms, such as Trust Region 
Policy Optimization (TRPO) [18] and Asynchronous Advantage Actor-Critic (A3C) [8], require new 
samples to be collected for each learning step on the policy, which occurs to the data inefficiency. In 
this work, we only focus on off-policy methods. Off-policy can allow to learn based on data 
according to the arbitrary policy, where we can demonstrate experience replay on improving data 
efficiency. Furthermore, Prioritized experience replay [19] extends the experience replay, which 
show its superiority to contributing the agent’s final performance, such as UNREAL [20], DQfD 
[21], and Rainbow [22]. 

3.2 Distributed DRL framework 

Parallel computation is not uncommon in the field of machine learning. The idea of distributed 
system for training large-scale neural networks has recently been induced into deep reinforcement 
learning, which benefits from the parallelism architecture DistBelief and the learning architecture 
(Actor-Critic). Inspired by these, Gorila based on multi-actors for data collection and multi-learners 
for parameter update, A3C based on multi-cores for multi-actors, GA3C based on GPU for multi-
actors [23] have been proposed, and more details can be referred to Ape-X. 
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actors’ network parameters are updated from the learner periodically. 

Algorithm 1.1 Prior Actor  
Given the baseline average reward 𝒓  of current prior actor 
for episode = 1 to M do 

Receive an initial state 𝒔𝟏 
for t = 1 to T do 
    Select the action 𝒂𝒕 ൌ 𝛑ሺ𝒔𝒕ሻ  
    Execute the action 𝒂𝒕 and observe the reward 𝒓𝒕ା𝟏 and the next state 𝒔𝒕ା𝟏 
    Store ሺ𝒔𝒕, 𝒂𝒕, 𝒓𝒕ା𝟏, 𝒔𝒕ା𝟏ሻ in LocalBuffer 
end for 
Periodically receive the average reward r from Learner 
if several times 𝒓 ൒ 𝛂𝒓 ሺ𝛂 ൐ 𝟏ሻ then 
    Replace the current prior actor with a new nature actor 
end if 

end for 
 

Algorithm 1.2 Nature Actor 
for episode = 1 to M do 

Receive an initial state 𝒔𝟏 
Initialize network parameters 𝜽𝟏 
for t = 1 to T do 
    Select the action 𝒂𝒕 ൌ 𝛑ሺ𝒔𝒕ሻ  
    Execute the action 𝒂𝒕 and observe the reward 𝒓𝒕ା𝟏 and the next state 𝒔𝒕ା𝟏 
    Store ሺ𝒔𝒕, 𝒂𝒕, 𝒓𝒕ା𝟏, 𝒔𝒕ା𝟏ሻ in LocalBuffer 
end for 
Periodically receive network parameters 𝜽𝒕 from Learner 

end for 
 

Algorithm 2 Prioritized Memory Replay 
if LocalBuffer’s capacity ൒ B then 

Get batch data B of multi-step transitions 𝝉 from LocalBuffer 
Calculate priorities for experience 𝒑 of buffered data 𝝉 
Add prioritized experience ሺ𝝉, 𝒑ሻ to Replay Memory 

end if 
 

Algorithm 3 Learner 
for episode = 1 to M do 

Initialize network parameters 𝜽𝟏 
for t = 1 to T do 
    Sample a prioritized batch of transitions ሺ𝒊𝒅, 𝝉ሻ from Replay Memory 
    Learn and update the network parameters 𝜽𝒕 
    Calculate and update priorities for experience 𝒑 
    Periodically remove old experience from replay memory 
end for 

end for 

5. Experiments 

5.1 AC2E-DQN on Discrete Environments 

The CA2E architecture we propose can be integrated with off-the-shelf deep reinforcement 
learning algorithms. First, we combined it with DQN on Atari using the standard reinforcement 
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learning benchmark. 
Before we formally introduce the experiment setup, let's review DQN algorithm briefly. We adopt 

several settings in the state-of-the-art DQN algorithm (Rainbow): double Q-learning and multi-step 
learning. We can compute the loss function with: 

𝐿ሺ𝜽ሻ ൌ 𝔼గሾ ଵ
ଶ ሺ∑ 𝛾௜௡ିଵ

௜ୀ଴ 𝑅௧ା௜ ൅ 𝛾௡𝑞ሺ𝑠௧ା௡, argmax
௔

𝑞ሺ𝑠௧ା௡ , 𝑎; 𝜽ሻ; 𝜽ିሻ െ 𝑞ሺ𝑠௧, 𝑎௧; 𝜽ሻሻଶሿ 　　　 

Where the networks are represented by the function approximator 𝑞ሺ∙ , ∙ ; 𝜽ሻ , and 𝜽  and 𝜽ି 
denotes parameters of the behavior network and the target network, respectively. 

Here we show the setups of reinforcement learning, and deep networks’ setups are in the appendix 
A. First, we use a single machine with multi-core CPU (8 cores) to run different actors for a variety 
of data generation, where 5 nature actors use ϵ-greedy policies with different values ϵ for an 
abundant exploration in the environment, while 3 prior actors use different pre-training DQN 
algorithms to supply effective experiences for exploitation. 

Secondly, we set shared experience replay memory. Q-learning methods, as the off-policy 
methods, can be available to experience replay with prioritization mechanism. For better data 
efficiency, we abandon the approach to waiting for the learner to update priorities, we may benefit 
from the computation of asynchronous actors. This means that with more actors, experiences in the 
replay memory are more closed to the latest learner being optimized, and the network parameters are 
more similarly generated by policies with the newest network parameters (on-policy). 

Thirdly, we set the learner. In principle, both actors and learners can be set by multiple distributed 
workers. Limited by the hardware equipment, we cannot know the effect of parallel training multiple 
GPUs, however, we trust the demonstration of Ape-X  on multiple actors with single learner 
(MASL). Updated network parameters can be communicated to the actors by the asynchronously 
response of the learner. 

Finally, we describe the environments. We evaluate CA2E-DQN by conducting experiments on 2 
Atari Environment. More details about the environments can be found in Appendix B. 

5.2 AC2E-DDPG on Continuous Control Tasks 

The setting of AC2E-DDPG is basically similar to that of AC2E-DQN, but according to Actor-
Critic algorithms, the model is represented as a separate actor-network with a critic-network, where 
the parameters of two networks are 𝜔 and 𝜃, respectively. We represent the actor-network (policy 
network) to output an action 𝐴௧ ൌ πሺ𝑆௧, 𝜃ሻ, and the parameter update uses policy gradient descent on 
the estimated Q-value, and depends on the following target function: 

 maxఏ 𝔼గሾ𝑞ሺ𝑆௧, 𝐴௧, 𝝎ሻሿ 　　　 

While we represent critic-network (Q-network) to output an estimate of an action-value 
function  𝑞ሺ𝑆௧, 𝐴௧, 𝝎ሻ , and the parameter update is similar to DQN. Here we use a multi-step 
bootstrap target. The loss function can be written as: 

 minఠ 𝔼గሾଵ

ଶ
ሺ𝐺௧ െ 𝑞ሺ𝑆௧, 𝐴௧, 𝝎ሻሻଶሿ 　　　 

Where multi-step return can be denoted as: 

 𝐺௧ ൌ ∑ 𝛾௜௡ିଵ
௜ୀ଴ 𝑅௧ା௜ ൅ 𝛾௡𝑞ሺ𝑠௧ା௡, 𝜋ሺ𝑠௧ା௡, 𝜽ିሻ; 𝝎ିሻ　　　 

Other Settings are the same as CA2E-DQN, and the setting of deep network is referred to 
appendix A. In addition, we setup the benchmarking performed in two continuous control domains, 
which are implemented in the MuJoCo physics simulator (Todorov et al. 2012). An introduction to 
the environment can be found in Appendix B. 

6. Results 

To showcase the performance of CA2E on high-dimensional continuous control tasks and discrete 
environments, we have trained on a set of Atari and MuJoCo problems involving Breakout, Pong, 
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applying the CA2E architecture to DQN and DDPG, but it can be also integrated with other off-
policy deep reinforcement learning algorithms. 

CA2E, as a scalable architecture for deep reinforcement learning, is gradually practical for 
research and applications. We hope our algorithm can speed up the efforts in distributed systems and 
compound algorithms for deep reinforcement learning. 
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Appendix A 

1. CA2E-DQN 

For Discrete environments in gym, we use a similar network architecture as described in DQN, 
which consists of 3 convolutional layers (32 filters of size 8 × 8 with stride 4, 64 filters of size 4 × 4 
with stride 2, 64 filters of size 3 × 3 with stride 1, in sequence), 1 hidden layer with 512 units and a 
fully connected linear output layer with one unit for each action. ReLUs are used in each layer, while 
layer normalization is used in the fully connected part of the network.  

The policy network with the same architecture as the Q-value network, except for a softmax 
output layer. The Q-value network is trained by the Adam optimizer with a learning rate of 1e-4 and 
a batch size of 32. The target networks are updated every 10 K timesteps. The replay buffer holds 1 
M transitions. For the ϵ-greedy, actors use different values ϵ for an abundant exploration in the 
environment, where we linearly anneal ϵ from the initial values to 0.1 over the first 1 M timesteps. 
As for observations, each frame is down-sampled to 84 × 84 pixels with converted to grayscale. The 
actual observation consists of a concatenation of 4 subsequent frames. Additionally, we use up to 30 
noop actions at the beginning of the episode. 

2. CA2E-DDPG 

For continuous tasks, since the setting features of the agents in MuJoCo simulator are low-
dimensional states, we use 3 dense layers to replace convolutional layers in DQN where the neural 
network is represented to process the pixel image inputs. A similar network architecture as described 
by DDPG is used: both the actor and the critic use 2 hidden (dense) layers with 64 ReLU units each, 
while layer normalization is applied to all layers. The actor network is followed by an output layer 
while the critic network is followed by a softmax output layer. Both the actor and critic are updated 
using the Adam optimizer with batch sizes of 128, where the critic is trained with a learning rate of 
1e-3 while the actor uses a learning rate of 1e-4. The target networks are soft-updated with τ = 1e-3. 
In addition, the critic is regularized using an L2 penalty with 1e-2. 

Appendix B 

1. Discrete Environments 

BreakoutNoFrameskip-v4 and PongNoFrameskip-v4 are to maximize your score in the Atari 
2600 games, which were simulated through the Arcade Learning Environment (ALE). In this 
environment, the observation is an RGB image of the screen, which is an array of shape (210, 160, 3). 

2. Continuous Tasks 

Benchmarking tasks have been performed in two continuous control domains ((a) Hopper-v2 and 
(b) Reacher-v2), which were implemented in the MuJoCo physics simulator. Hopper-v2 is a hopper 
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walker with action, state dimensionalities |𝒮| ൌ 13  and |𝒜| ൌ 3  respectively. Reacher-v2 is a 
manipulator with |𝒮| ൌ 13 and |𝒜| ൌ 2, which receives reward for catching a randomly-initialized 
moving ball. 
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