
Compound Asynchronous Exploration and Exploitation

Jie Bai1,a, Li Liu2,b, Yaobing Wang1,c, Haoyu Zhang3,d, Jianfei Li1,e
1Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Applications, Beijing

Institute of Spacecraft System Engineering, Beijing, China
2College of Engineering, Peking University, Beijing, China

3Science and Technology on Space Intelligent Control Laboratory, Beijing Institute of Control Engineering,
Beijing, China

abaijierobot@163.com, bm55852@126.com, ciamwyb@163.com, dHaoy_Zhang@163.com,
elijianfei_hit@foxmail.com

Keywords: Deep Reinforcement Learning, Exploration and Exploitation, Asynchronous Methods

Abstract: Data efficiency has always been a significant key topic for deep reinforcement learning.
The main progress has been on sufficient exploration and effective exploitation. However, the two
are often discussed separately. Profit from distributed systems, we propose an asynchronous
approach to deep reinforcement learning by combining exploration and exploitation. We apply our
framework to off-the-shelf deep reinforcement learning algorithms, and experimental results show
that our algorithm is superior in final performance and efficiency.

1. Introduction

Deep Reinforcement Learning (DRL) has been demonstrated on a series of challenge domains,
from games [1-2] to robotic control [3]. However, there exist a central challenge to contribute DRL
algorithms on real-world platforms. The main-stream DRL algorithms remain to be model-free DRL
algorithms, which suffer from high sample complexity. Either relatively simple tasks or complex
behaviors with high-dimensional observations might require millions of steps of data collection or
even substantially more [4].

Effective use of computational resources [5] and more powerful and robust models [6] have
recently achieved some successes for data efficiency. Deep learning frameworks such as DistBelief
[5] can make large-scale neural networks efficient to implement, which place massive amounts of
data on a distributed learning system. Some progress has been made on effective use of
computational resources such as Gorila [7], A3C [8], GA3C [9] and Ape-X [10].

Despite the profit from the parallelism, the comprehensive utilization of available resources
becomes a novel perspective, such as exploration and exploitation. Research on exploration and
exploitation has always been decoupled, with some research focused on exploration [11-12] and
others on exploitation [13]. More details can be seen in Section III. A combining and/or unified
approach to exploration and exploitation remains to be ambiguous.

In this paper, we propose an asynchronous approach to deep reinforcement learning by combining
exploration and exploitation, to generate more data and learn efficiently. Unlike general methods of
distributed framework for deep learning algorithms focusing on parallelizing the computation of the
models [5] or decoupled actors and learners [10], we contribute distributed systems on data
generation.

We investigate the application of our framework integrated with off-the-shelf deep reinforcement
learning algorithms such as Deep Q-Networks (DQN) [14] and Deep Deterministic Policy Gradient
(DDPG) [15]. Experiments show this combination of exploration and exploitation is available to
many types of both continuous control tasks and discrete environments. Our results indicate much
faster training time and better final performance.

2019 2nd International Conference on Mechanical, Electronic and Engineering Technology (MEET 2019)

Published by CSP © 2019 the Authors 371

2. Background

In this section, we formulate the standard reinforcement learning problem, and introduce the
necessary algorithmic foundations on which we demonstrate the methods for this work.

2.1 Reinforcement learning

We consider a reinforcement learning process where an agent interacts with an environment
modeled as a Markov Decision Process (MDP) [16]. An MDP is defined by a tuple ሺ𝒮, 𝒜, 𝑅, 𝛾, 𝑃ሻ,
where 𝒮 is the state space, 𝒜 is the action space, R is the reward function, 𝛾 is the discount factor
and P is the transition dynamics. At each state 𝑠, the agent selects an action 𝑎 according to the policy
π, consisting of the stochastic distribution πሺ𝑠|𝑎ሻ or a deterministic mapping 𝑎 ൌ πሺ𝑠ሻ, transitions
to new state 𝑠′ according to the dynamics 𝑃ሺ𝑠ᇱ|𝑠, 𝑎ሻ, and receives a reward 𝑅ሺ𝑠, 𝑎ሻ. Here, the goal of
reinforcement learning is to learn a policy maximizing the expected discounted reward over the
agent’s trajectory τ ൌ ሺ𝑠଴, 𝑎଴, 𝑠ଵ, 𝑎ଵ, … ሻ.

2.2 Actor-Critic framework

The approach to reinforcement learning problems can be available to two alternative methods.
The first one value function approaches (Critic-only), is an estimate of the expected future reward
according to the policy π, where the value-action function Q஠ is defined as:

 𝑄గሺ𝑠, 𝑎ሻ ൌ 𝔼஠ሾ∑ 𝛾௧ାஶ
௧ୀ଴ 𝑅ሺ𝑠௧, 𝑎௧ሻሿ 　　　

The policy is implicitly derived from 𝑄గ as 𝜋ሺ𝑠ሻ ൌ argmax௔∈𝒜𝑄గሺ𝑠, 𝑎ሻ. The other available
method is policy search (Actor-only). In the policy search methods, policies are represented by a
variety of approaches and can be directly optimized to maximize the cumulative reward, given:

 𝐽ሺθሻ ൌ 𝔼ఛ~஠ഇሺఛሻሾ𝑟ሺ𝜏ሻሿ ൌ ׬ 𝜋ఏሺ𝜏ሻ𝑟ሺ𝜏ሻ
ఛ~గഇሺఛሻ d𝜏　　　

Where r(τ) represents the total reward of the trajectory. Actor-Critic framework [17] is composed
of value function approaches and policy search methods, where the Critic estimates the value
function according to the temporal difference (TD) learning, while the Actor updates the policy
parameters according to the learned value function.

3. Related Works

3.1 Off-policy DRL Methods

We demonstrated that, mature off-policy algorithms, such as Deep Deterministic Policy Gradient
(DDPG) [15] and Normalized Advantage Function (NAF) [4], can achieve a well-used data
efficiency. In contrast, some general-purpose on-policy DRL algorithms, such as Trust Region
Policy Optimization (TRPO) [18] and Asynchronous Advantage Actor-Critic (A3C) [8], require new
samples to be collected for each learning step on the policy, which occurs to the data inefficiency. In
this work, we only focus on off-policy methods. Off-policy can allow to learn based on data
according to the arbitrary policy, where we can demonstrate experience replay on improving data
efficiency. Furthermore, Prioritized experience replay [19] extends the experience replay, which
show its superiority to contributing the agent’s final performance, such as UNREAL [20], DQfD
[21], and Rainbow [22].

3.2 Distributed DRL framework

Parallel computation is not uncommon in the field of machine learning. The idea of distributed
system for training large-scale neural networks has recently been induced into deep reinforcement
learning, which benefits from the parallelism architecture DistBelief and the learning architecture
(Actor-Critic). Inspired by these, Gorila based on multi-actors for data collection and multi-learners
for parameter update, A3C based on multi-cores for multi-actors, GA3C based on GPU for multi-
actors [23] have been proposed, and more details can be referred to Ape-X.

372

3.3 Explor

A pletho
however, th
Noisy netw
noise to pa
contrary, w
[13], whic
learning. T
trajectories
well-traine
the baselin

4. Algorith

In this
exploration
Asynchron
can be effe
data efficie

Similar
architectur
methods. T
its own tra
learning (p
memory an

In the D
We adopt t
the experie
network pa

In Ape-
still adopts
In our wor
of these pre

In gener
actors leve

By off-p
our method
make furth
actors diff
replay. Pse
1, 2 and 3.

Fig. 1. The
multiple a

the inte
samples f

ration and

ora of meth
hey are limi

works, Param
arameter spa
we can think
ch leverage
This metho
s to accelera
ed models pr
ne algorithm

hm

work, our
n and prio
nous Explor
ectively com
ency.

to Gorila
re and learn
The first co
ajectories of
policy impro
nd update th

DistBelief, b
the GA3C t
ence, while
arameters.
-X, it priorit
s ϵ-greedy t
rk, we decom
e-prepared h
ral, since da

erage demon
policy meth
ds can impr
her use of C
ferent explo
eudocode fo

e CA2E arc
actors, gene

eraction with
from the exp

exploitatio

hods have b
ited to the o
meter space
ace, while u
k about the e
s even ver
d can insp
ate the train
roposed pre

ms offered by

r contributi
or exploita
ration and E
mbined with

, we deco
ning, where
mponent ac
f experienc
ovement), s
he network p
both the acto
to our archi
a single lea

tizes the exp
to collect th
mpose the a
high-quality
ata generati
nstration dat
hods, we can
rove data ef

CA2E to co
oration/expl
or the actors

chitecture in
erate explor
h the enviro
perience rep

n

een propose
one-side. So
e noise, whi

utilize param
exploitation
ry small am
ire us to m

ning speed o
eviously can
y OpenAI, w

ion is a c
tion, and

Exploitation
h off-the-she

ompose the
e we decou
cting (policy
e and store

samples a m
parameters,
ors and the l
itecture, wh
arner runs o

perience, to
he data, by g
actors into n
y sampling t
ion can hard
ta from train
n demonstr
fficiency fr
llect the dat
loitation po
, prioritized

n a containe
ration data (
onment, and
play memor

ed to impro
ome of the a
hich represen
meter perturb
n, such as D
mounts of
make use o
of the mode
n provide th
we can stand

compound
we propos

n (CA2E). T
elf DRL alg

e deep rein
uple acting
y evaluation

es the data i
minibatch of
 which show
learners can
here multipl
on a GPU to

o sample the
giving the d
nature actor
trajectory to
dly discove
ned models
rate experien
rom two asp
ata from ma
olicies, sam
d memory re

er with the M
(nature acto
d add them t
ry and upda

ove the trade
art-of-the-sta
nt the mode
bations for m
eep Q-learn
demonstrati

of these pre
el. Moreover
he test data
d on the sho

method of
se a nove
This paper i
orithms to i

nforcement
from learn

n), interacts
in a memor
f experience
ws in Figure
n be possess
le actors run
o sample fro

e most usefu
different act
rs and prior
o sample the
er the high p
, to accelera
nce replay o
pects: data c
any distribut
mpling prior
eplay and th

Multi-Actor
ors) and exp
to a shared

ates the netw

e-off explor
ate explorat
el as neural
more efficie

ning from D
ion data to
e-prepared
r, we can al
for exploita
oulders of th

f parallel c
l framewo
investigates
mprove the

learning a
ning and ad
s with the e
ry buffer. T
e (off-policy
e 1.
ed of multip
n on multi-c
om the mem

ul data more
tors differen
actors. Prio

e most usefu
prioritized d
ate the train
on improvin
collection a
ted actors, b
ritized data
he learners i

rs-Single-Le
loitation da
experience

work parame

ration and e
tion algorith
l networks a
ent explorat

Demonstratio
o massively
high-quality
lso utilize th
ation. Becau
he giants.

computation
ork called
 how CA2E

e final perfo

algorithms
dopt the asy
environmen
The second
y algorithm

ple distribut
core CPUs

mory buffer

e often. Rem
nt explorati
or actors ca

ful data.
data, we pro
ning speed o
ng data effi
and data sam
by giving th

a from the
is shown in

earner (MA
ata (prior act

buffer. The
eters. Mean

exploitation,
hms include
and add the
tion. On the
ons (DQfD)
y accelerate
y sampling
he data that
use we have

n, effective
Compound

E algorithm
rmance and

from both
ynchronous
t, generates
component

ms) from the

ted workers
to generate
and update

markably, it
on policies.

an make use

opose, prior
of the model
ciency, and
mpling. We
he different
experience
Algorithms

ASL) system
tors) from

e learner
nwhile, the

,
e
e
e
)
e
g
t
e

e
d

m
d

h
s
s
t
e

s.
e
e

t
.
e

r
l.
d
e
t
e
s

m:

373

actors’ network parameters are updated from the learner periodically.

Algorithm 1.1 Prior Actor
Given the baseline average reward 𝒓 of current prior actor
for episode = 1 to M do

Receive an initial state 𝒔𝟏
for t = 1 to T do
 Select the action 𝒂𝒕 ൌ 𝛑ሺ𝒔𝒕ሻ
 Execute the action 𝒂𝒕 and observe the reward 𝒓𝒕ା𝟏 and the next state 𝒔𝒕ା𝟏
 Store ሺ𝒔𝒕, 𝒂𝒕, 𝒓𝒕ା𝟏, 𝒔𝒕ା𝟏ሻ in LocalBuffer
end for
Periodically receive the average reward r from Learner
if several times 𝒓 ൒ 𝛂𝒓 ሺ𝛂 ൐ 𝟏ሻ then
 Replace the current prior actor with a new nature actor
end if

end for

Algorithm 1.2 Nature Actor
for episode = 1 to M do

Receive an initial state 𝒔𝟏
Initialize network parameters 𝜽𝟏
for t = 1 to T do
 Select the action 𝒂𝒕 ൌ 𝛑ሺ𝒔𝒕ሻ
 Execute the action 𝒂𝒕 and observe the reward 𝒓𝒕ା𝟏 and the next state 𝒔𝒕ା𝟏
 Store ሺ𝒔𝒕, 𝒂𝒕, 𝒓𝒕ା𝟏, 𝒔𝒕ା𝟏ሻ in LocalBuffer
end for
Periodically receive network parameters 𝜽𝒕 from Learner

end for

Algorithm 2 Prioritized Memory Replay
if LocalBuffer’s capacity ൒ B then

Get batch data B of multi-step transitions 𝝉 from LocalBuffer
Calculate priorities for experience 𝒑 of buffered data 𝝉
Add prioritized experience ሺ𝝉, 𝒑ሻ to Replay Memory

end if

Algorithm 3 Learner
for episode = 1 to M do

Initialize network parameters 𝜽𝟏
for t = 1 to T do
 Sample a prioritized batch of transitions ሺ𝒊𝒅, 𝝉ሻ from Replay Memory
 Learn and update the network parameters 𝜽𝒕
 Calculate and update priorities for experience 𝒑
 Periodically remove old experience from replay memory
end for

end for

5. Experiments

5.1 AC2E-DQN on Discrete Environments

The CA2E architecture we propose can be integrated with off-the-shelf deep reinforcement
learning algorithms. First, we combined it with DQN on Atari using the standard reinforcement

374

learning benchmark.
Before we formally introduce the experiment setup, let's review DQN algorithm briefly. We adopt

several settings in the state-of-the-art DQN algorithm (Rainbow): double Q-learning and multi-step
learning. We can compute the loss function with:

𝐿ሺ𝜽ሻ ൌ 𝔼గሾ ଵ
ଶ ሺ∑ 𝛾௜௡ିଵ

௜ୀ଴ 𝑅௧ା௜ ൅ 𝛾௡𝑞ሺ𝑠௧ା௡, argmax
௔

𝑞ሺ𝑠௧ା௡ , 𝑎; 𝜽ሻ; 𝜽ିሻ െ 𝑞ሺ𝑠௧, 𝑎௧; 𝜽ሻሻଶሿ 　　　

Where the networks are represented by the function approximator 𝑞ሺ∙ , ∙ ; 𝜽ሻ , and 𝜽 and 𝜽ି
denotes parameters of the behavior network and the target network, respectively.

Here we show the setups of reinforcement learning, and deep networks’ setups are in the appendix
A. First, we use a single machine with multi-core CPU (8 cores) to run different actors for a variety
of data generation, where 5 nature actors use ϵ-greedy policies with different values ϵ for an
abundant exploration in the environment, while 3 prior actors use different pre-training DQN
algorithms to supply effective experiences for exploitation.

Secondly, we set shared experience replay memory. Q-learning methods, as the off-policy
methods, can be available to experience replay with prioritization mechanism. For better data
efficiency, we abandon the approach to waiting for the learner to update priorities, we may benefit
from the computation of asynchronous actors. This means that with more actors, experiences in the
replay memory are more closed to the latest learner being optimized, and the network parameters are
more similarly generated by policies with the newest network parameters (on-policy).

Thirdly, we set the learner. In principle, both actors and learners can be set by multiple distributed
workers. Limited by the hardware equipment, we cannot know the effect of parallel training multiple
GPUs, however, we trust the demonstration of Ape-X on multiple actors with single learner
(MASL). Updated network parameters can be communicated to the actors by the asynchronously
response of the learner.

Finally, we describe the environments. We evaluate CA2E-DQN by conducting experiments on 2
Atari Environment. More details about the environments can be found in Appendix B.

5.2 AC2E-DDPG on Continuous Control Tasks

The setting of AC2E-DDPG is basically similar to that of AC2E-DQN, but according to Actor-
Critic algorithms, the model is represented as a separate actor-network with a critic-network, where
the parameters of two networks are 𝜔 and 𝜃, respectively. We represent the actor-network (policy
network) to output an action 𝐴௧ ൌ πሺ𝑆௧, 𝜃ሻ, and the parameter update uses policy gradient descent on
the estimated Q-value, and depends on the following target function:

 maxఏ 𝔼గሾ𝑞ሺ𝑆௧, 𝐴௧, 𝝎ሻሿ 　　　

While we represent critic-network (Q-network) to output an estimate of an action-value
function 𝑞ሺ𝑆௧, 𝐴௧, 𝝎ሻ , and the parameter update is similar to DQN. Here we use a multi-step
bootstrap target. The loss function can be written as:

 minఠ 𝔼గሾଵ

ଶ
ሺ𝐺௧ െ 𝑞ሺ𝑆௧, 𝐴௧, 𝝎ሻሻଶሿ 　　　

Where multi-step return can be denoted as:

 𝐺௧ ൌ ∑ 𝛾௜௡ିଵ
௜ୀ଴ 𝑅௧ା௜ ൅ 𝛾௡𝑞ሺ𝑠௧ା௡, 𝜋ሺ𝑠௧ା௡, 𝜽ିሻ; 𝝎ିሻ　　　

Other Settings are the same as CA2E-DQN, and the setting of deep network is referred to
appendix A. In addition, we setup the benchmarking performed in two continuous control domains,
which are implemented in the MuJoCo physics simulator (Todorov et al. 2012). An introduction to
the environment can be found in Appendix B.

6. Results

To showcase the performance of CA2E on high-dimensional continuous control tasks and discrete
environments, we have trained on a set of Atari and MuJoCo problems involving Breakout, Pong,

375

Hopper and
mean retur

As can
best of the
efficiency.
improveme

On the
respectivel
three basel
improveme

Due to t
comparison

Fig. 2. C

Fig. 3. Com

7. Conclus

In this p
exploration
environme

Many d
whole. CA
exploitatio
demonstrat
substantial

CA2E i
simulated

d Reacher.
rns of MuJo
be seen fro
e three bas
Limited by

ents in the f
MuJoCo e

ly. As can b
line algorith
ent in the fin
time and en
n, which is t

(a) B

Comparison
times

mparison of

sion

paper, we pr
n and exploi
nts and con

deep reinfor
A2E uses a
n to addres
tions for lea
ly explorati
is mainly d
environmen

See Figure
Co environm

om Figure 2
seline algor
y the trainin
final perform
environmen
be seen fro
hms, CA2E
nal perform
nergy, we ha
the future w

BreakoutNo

of several a
steps. (a) Br

(a) Hoppe

f several alg
tim

ropose an as
itation. This

ntinuous con
rcement lear

compound
ss the issue
arning. Prof
ion and effe
designed for
nts but also

2 for the m
ments with

2, CA2E sho
rithms (A2C
ng cycle an
mance when
ts, we also
m Figure 3

E shows a f
mance when

ave not test
work of impr

oFrameskip

algorithms o
reakoutNoF

er-v2

gorithms on
mesteps. (a) H

synchronou
s architectur

ntrol tasks, b
rning algori

d method of
e: generatin

fit from the d
ctive exploi
r large quan
o a series o

mean returns
different al

ows a faster
C), reflectin

nd the perfo
n the algorit
o consider
3, compared
faster impro
the algorith

ted more alg
roving and

-v4

on several A
Frameskip-v

n several Mu
Hopper-v2

us approach
ure has achie
both in term
ithms limit
f parallel c
ng a divers
distributed
itation.
ntities of d
of real-wor

s of Atari en
gorithms.
r improvem
ng the prio

ormance of
hm converg
DDPG, A2

d with the b
ovement in
hm converge
gorithms an
perfecting t

 (b) PongN

Atari enviro
v4 (b) PongN

 (b) R

uJoCo envir
(b) Reacher

to deep rein
eved progre

ms of data ef
their ability

computation
se set of ex
system, our

data generat
rld applicat

nvironment

ment in the a
or actors' ro
the worksta

ges.
2C and PPO
best algorith
the average

es.
nd tasks for
the CA2E al

NoFrameski

onments, tra
NoFramesk

Reacher-v2

ronments, tr
r-v2

nforcement
ssive result

fficiency and
y to effectiv
n, effective
xperiences
r algorithm p

ion in para
ions. In thi

ts, and Figu

average retu
ole in impr
ation, there

O2 with 10
hm (PPO2)
e return, an

horizontal a
lgorithm.

ip-v4

aining for te
kip-v4

raining for

learning by
ts in a range
d final perfo
vely explora

exploration
and leverag
perfectly in

allel, where
is work, w

ure 3 for the

urn than the
roving data
are several

0M frames,
among the

nd a certain

and vertical

en million

one million

y combining
e of discrete
ormance.
ation on the
n and prior
ging useful

ntegrates the

it includes
we focus on

e

e
a
l

,
e
n

l

n

g
e

e
r
l
e

s
n

376

applying the CA2E architecture to DQN and DDPG, but it can be also integrated with other off-
policy deep reinforcement learning algorithms.

CA2E, as a scalable architecture for deep reinforcement learning, is gradually practical for
research and applications. We hope our algorithm can speed up the efforts in distributed systems and
compound algorithms for deep reinforcement learning.

Acknowledgment

Thanks to the Baseline algorithms provided by OpenAI.

References

[1] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning. In
NIPS Deep Learning Workshop, 2013.

[2] Silver D, Huang A, Maddison C J, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

[3] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017.

[4] Gu S, Lillicrap T, Sutskever I, et al. Continuous deep q-learning with model-based acceleration.
In International Conference on Machine Learning, 2016.

[5] Dean J, Corrado G, Monga R, et al. Large scale distributed deep networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems, 2012.

[6] Kaiser L, Gomez A N, Shazeer N, et al. One model to learn them all. arXiv preprint
arXiv:1706.05137, 2017.

[7] Nair A, Srinivasan P, Blackwell S, et al. Massively parallel methods for deep reinforcement
learning. arXiv preprint arXiv:1507.04296, 2015.

[8] Mnih V, Badia A P, Mirza M, et al. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, 2016.

[9] Babaeizadeh M, Frosio I, Tyree S, et al. Reinforcement learning through asynchronous
advantage actor-critic on a gpu. arXiv preprint arXiv:1611.06256, 2016.

[10] Horgan D, Quan J, Budden D, et al. Distributed prioritized experience replay. arXiv preprint
arXiv:1803.00933, 2018.

[11] Fortunato M, Azar M G, Piot B, et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

[12] Plappert M, Houthooft R, Dhariwal P, et al. Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905, 2017.

[13] Hester T, Vecerik M, Pietquin O, et al. Deep Q-learning from Demonstrations. arXiv preprint
arXiv:1704.03732, 2017.

[14] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement
learning. Nature, 2015.

[15] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[16] Sutton R S, Barto A G. Reinforcement learning: An introduction. MIT press, 1998.

[17] Peters J, Vijayakumar S, Schaal S. Natural Actor-Critic. Neurocomputing, 71(7):1180-1190,
2008.

377

[18] Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization. Trust region policy
optimization. In International Conference on Machine Learning, 2015.

[19] Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

[20] Jaderberg M, Dalibard V, Osindero S, et al. Population based training of neural networks.
arXiv preprint arXiv:1711.09846, 2017.

[21] Hasselt H V. Double Q-learning. In Advances in Neural Information Processing Systems, 2010.

[22] Hessel M, Modayil J, Van Hasselt H, et al. Rainbow: Combining improvements in deep
reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

[23] Bellemare M G, Naddaf Y, Veness J, et al. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence Research, 47: 253-279, 2013.

Appendix A

1. CA2E-DQN

For Discrete environments in gym, we use a similar network architecture as described in DQN,
which consists of 3 convolutional layers (32 filters of size 8 × 8 with stride 4, 64 filters of size 4 × 4
with stride 2, 64 filters of size 3 × 3 with stride 1, in sequence), 1 hidden layer with 512 units and a
fully connected linear output layer with one unit for each action. ReLUs are used in each layer, while
layer normalization is used in the fully connected part of the network.

The policy network with the same architecture as the Q-value network, except for a softmax
output layer. The Q-value network is trained by the Adam optimizer with a learning rate of 1e-4 and
a batch size of 32. The target networks are updated every 10 K timesteps. The replay buffer holds 1
M transitions. For the ϵ-greedy, actors use different values ϵ for an abundant exploration in the
environment, where we linearly anneal ϵ from the initial values to 0.1 over the first 1 M timesteps.
As for observations, each frame is down-sampled to 84 × 84 pixels with converted to grayscale. The
actual observation consists of a concatenation of 4 subsequent frames. Additionally, we use up to 30
noop actions at the beginning of the episode.

2. CA2E-DDPG

For continuous tasks, since the setting features of the agents in MuJoCo simulator are low-
dimensional states, we use 3 dense layers to replace convolutional layers in DQN where the neural
network is represented to process the pixel image inputs. A similar network architecture as described
by DDPG is used: both the actor and the critic use 2 hidden (dense) layers with 64 ReLU units each,
while layer normalization is applied to all layers. The actor network is followed by an output layer
while the critic network is followed by a softmax output layer. Both the actor and critic are updated
using the Adam optimizer with batch sizes of 128, where the critic is trained with a learning rate of
1e-3 while the actor uses a learning rate of 1e-4. The target networks are soft-updated with τ = 1e-3.
In addition, the critic is regularized using an L2 penalty with 1e-2.

Appendix B

1. Discrete Environments

BreakoutNoFrameskip-v4 and PongNoFrameskip-v4 are to maximize your score in the Atari
2600 games, which were simulated through the Arcade Learning Environment (ALE). In this
environment, the observation is an RGB image of the screen, which is an array of shape (210, 160, 3).

2. Continuous Tasks

Benchmarking tasks have been performed in two continuous control domains ((a) Hopper-v2 and
(b) Reacher-v2), which were implemented in the MuJoCo physics simulator. Hopper-v2 is a hopper

378

walker with action, state dimensionalities |𝒮| ൌ 13 and |𝒜| ൌ 3 respectively. Reacher-v2 is a
manipulator with |𝒮| ൌ 13 and |𝒜| ൌ 2, which receives reward for catching a randomly-initialized
moving ball.

379

